## केंद्रीय विद्यालय संगठन ,बेंगलरु, संभाग KENDRIYA VIDYALAYA SANGATHAN, BENGALURU REGION प्रथम प्री-बोर्ड परीक्षा (२०२४-२५) FIRST PRE-BOARD EXAMINATION (2024-25)

CLASS: X
SUBJECT: MATHEMATICS (STANDARD)

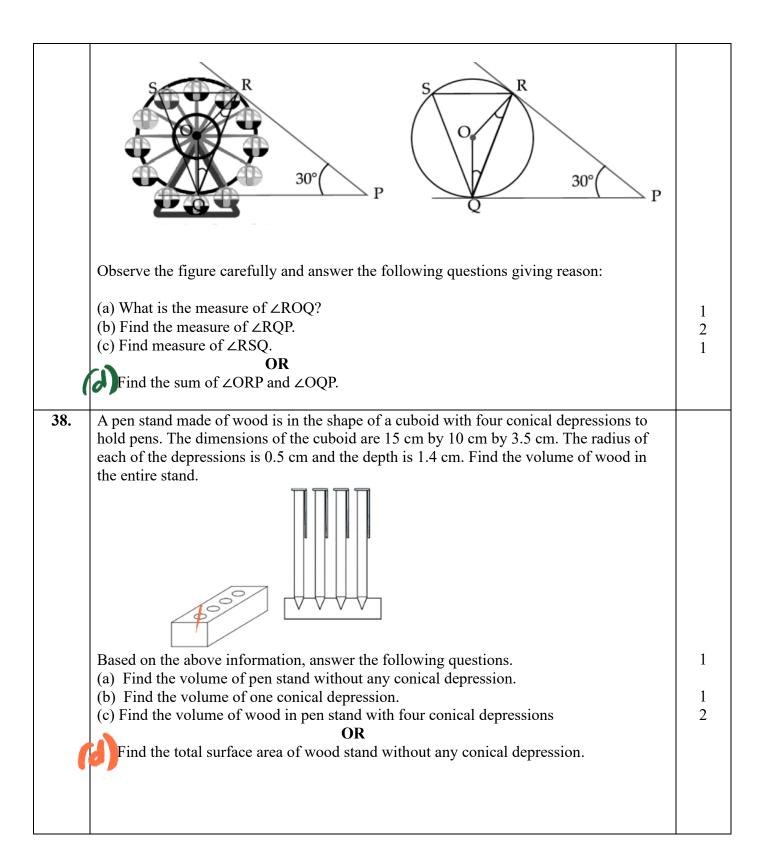
MAX.MARKS:80
TIME: 3 Hrs.

**CODE: 041** 

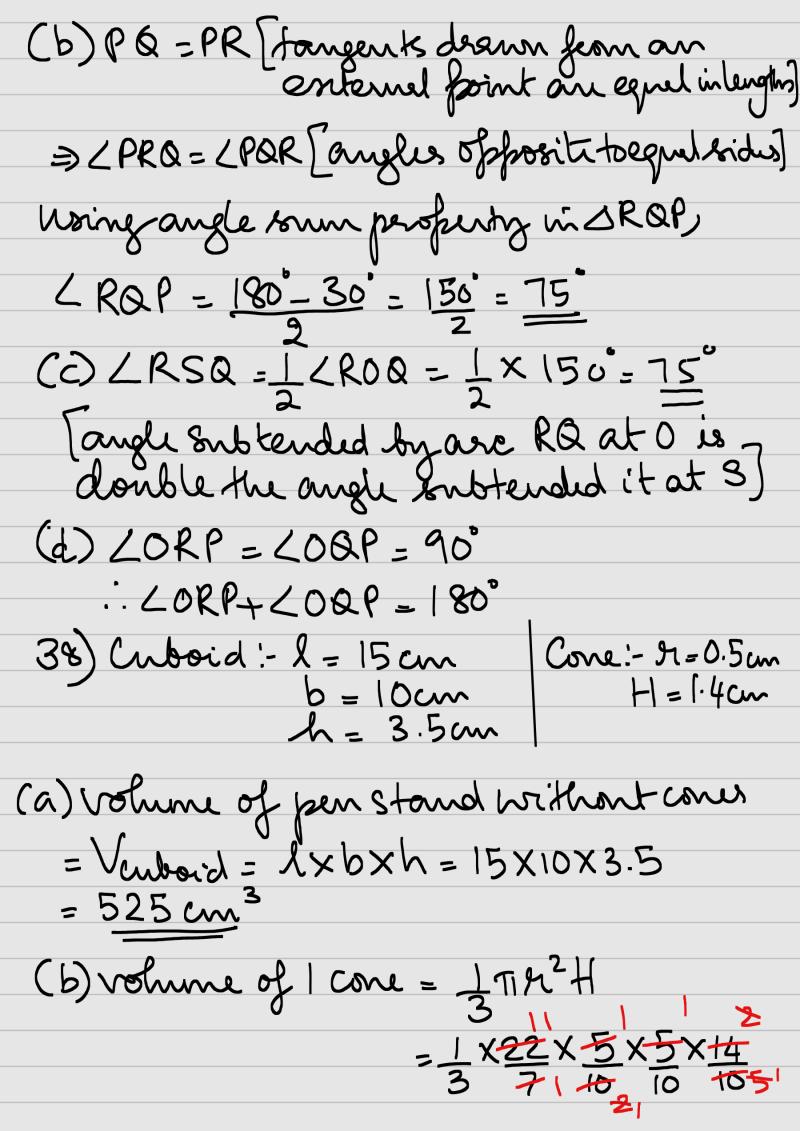
## **General Instructions:**

- 1. This question paper contains 38 questions.
- 2. This Question Paper is divided into 5 Sections A, B, C, D and E.
- 3. In Section A, Question No 1-18 are MCQs and Q No19 and 20 are Assertion-Reason based questions of 1 mark each.
- 4. In Section B Question no 21-25 are very short answer (VSA) type questions, carrying 2 marks each.
- 5. In Section C, Question no. 26-31 are short answer (SA) type questions, carrying 3 marks each.
- 6. In Section D Question no 32-35 are long answer (LA) type questions carrying 5 marks each.
- 7. In Section E, question no 36-38 are case based questions carrying 4 marks each with sub parts of the values of 1,1 and 2 marks each respectively.
- 8. All Questions are compulsory. However, an internal choice in 2 Qs of Section B, 2 Questions of Section C and 2 Questions of Section D has been provided. An internal choice has been provided in all the 2 marks questions of Section E.
- 9. Draw neat and clean figures wherever required.
- 10. Take  $\pi$ =22/7 wherever required if not stated
- 11. Use of calculators is not allowed

|    | SECTION-A                                                                                                     |   |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------|---|--|--|--|
|    | Section A consists of 20 questions of 1 mark each                                                             |   |  |  |  |
| 1. | The zeroes of the quadratic polynomial $x^2 + 25x + 156$ are                                                  |   |  |  |  |
|    | (a) both positive (b) both negative                                                                           |   |  |  |  |
|    | (c) one positive and one negative (d) can't be determined                                                     |   |  |  |  |
| 2. | The pair of linear equations $\frac{3}{2}x + \frac{5}{3}y = 7$ and $9x + 10y = 14$ is                         |   |  |  |  |
|    | (a) consistent (b) inconsistent                                                                               |   |  |  |  |
|    | (c) consistent with one solution (d) consistent with many solutions                                           | 1 |  |  |  |
| 3. | In figure, PQ and PR are tangents to a circle with centre A. If $\angle QPA = 27^{\circ}$ , then $\angle QAR$ |   |  |  |  |
|    | equals to                                                                                                     |   |  |  |  |
|    | <u> </u>                                                                                                      |   |  |  |  |
|    |                                                                                                               |   |  |  |  |
|    | $A \longleftrightarrow P$                                                                                     |   |  |  |  |
|    |                                                                                                               |   |  |  |  |
|    | R                                                                                                             |   |  |  |  |
|    | (a) $63^{\circ}$ (b) $153^{\circ}$ (c) $126^{\circ}$ (d) $117^{\circ}$                                        | 1 |  |  |  |
| 4. | The next term of the AP: $\sqrt{18}$ , $\sqrt{50}$ , $\sqrt{98}$ , is                                         |   |  |  |  |
| 7. | (a) $\sqrt{146}$ (b) $\sqrt{128}$ (c) $\sqrt{162}$ (d) $\sqrt{200}$                                           | 1 |  |  |  |
|    | (a) V 140 (b) V 128 <b>V</b> (c) V 102 (d) V 200                                                              | 1 |  |  |  |


|     |                                                                                                                                                                    | 1 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 5.  | Volumes of two spheres are in the ratio 64: 27. The ratio of their surface areas is (a) 3: 4 (b) 4: 3 (c) 9: 16 (d) 16: 9                                          | 1 |
| 6.  | If $tanA = \frac{5}{12}$ , then find the value of $(sinA + cosA)$ . secA                                                                                           |   |
|     | 12/5 (b) 17/12 (c) 7/12 (d) None of these                                                                                                                          | 1 |
| 7.  | In the given figure AB, AC and AD are tangents to the circle. If AB =5 cm, then AD is                                                                              |   |
|     | equal to                                                                                                                                                           |   |
|     | 1                                                                                                                                                                  | 1 |
|     |                                                                                                                                                                    |   |
|     | B                                                                                                                                                                  |   |
|     | A · Yc · A                                                                                                                                                         |   |
|     |                                                                                                                                                                    |   |
|     |                                                                                                                                                                    |   |
| •   | (a) 5 cm (b) 6 cm (c) 9 cm (d) 10 cm                                                                                                                               |   |
|     |                                                                                                                                                                    |   |
| 8.  | If zeroes of $p(x) = 2x^2 - 7x + k$ are reciprocal of each other, then value of k is                                                                               |   |
|     | (a) 1 (b) 2 (c) 3 (d) 4                                                                                                                                            | 1 |
|     |                                                                                                                                                                    |   |
| 9.  | The median class of the following marks of 100 students is:                                                                                                        |   |
|     | Marks 0-10 10-20 20-30 30-40 40-50 50-60                                                                                                                           |   |
|     | Number of students         8         10         12         22         30         18                                                                                | 1 |
|     | (a) $20-30$ (b) $30-40$ (c) $40-50$ (d) $50-60$                                                                                                                    | 1 |
| 10. | In the figure PA and PB are tangents to the circle with centre O. If $\angle APB = 60^{\circ}$ , then                                                              |   |
| 100 | ∠OAB is                                                                                                                                                            |   |
|     | Δ                                                                                                                                                                  |   |
|     |                                                                                                                                                                    |   |
|     |                                                                                                                                                                    |   |
|     | P (   •0 )                                                                                                                                                         |   |
|     |                                                                                                                                                                    |   |
|     | B                                                                                                                                                                  |   |
|     | $(c) 30^{\circ}$ $(b) 60^{\circ}$ $(c) 90^{\circ}$ $(d) 15^{\circ}$                                                                                                |   |
|     |                                                                                                                                                                    | 1 |
| 11. | The nature of the roots of the quadratic equation $9x^2 - 6x - 2 = 0$                                                                                              |   |
|     | (a) Irrational and distinct (b) Not real                                                                                                                           |   |
|     | (d) Real and equal                                                                                                                                                 | 1 |
|     |                                                                                                                                                                    |   |
| 12. | If 3 cot $\theta = 2$ , then the value of $\tan \theta$ (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ (c) $\frac{3}{\sqrt{13}}$ (d) $\frac{2}{\sqrt{13}}$                    |   |
|     | (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ (c) $\frac{3}{\sqrt{13}}$ (d) $\frac{2}{\sqrt{13}}$                                                                            | 1 |
|     | VIS VIS                                                                                                                                                            |   |
| 13. | A toy is in the form of a cone of radius r cm mounted on a hemisphere of the same                                                                                  |   |
| 13. | radius. The total height of the toy is $(r + h)$ cm, then the volume of the toy is                                                                                 |   |
|     | (a) $\pi$ (2r +h) cm <sup>3</sup> (b) $\pi$ r <sup>2</sup> (2r + h) cm <sup>3</sup>                                                                                |   |
|     | (a) $\pi (2r + h) \text{ cm}^3$ (b) $\pi r^2 (2r + h) \text{ cm}^3$ (c) $\frac{1}{3} \pi r^2 (2r + h) \text{ cm}^3$ (d) $\frac{1}{3} \pi r^2 (r + h) \text{ cm}^3$ | 1 |
| '   | $\frac{1}{3}m \left(21 + 11\right) \operatorname{cm} \left(4\right) = \frac{1}{3}m \left(1 + 11\right) \operatorname{cm}$                                          |   |
|     |                                                                                                                                                                    |   |

| 14. | draws a card from the box. Find the probability that the number on the card is: a prime                                                                                    |   |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|     |                                                                                                                                                                            |   |  |  |  |
|     | number 7 7 8                                                                                                                                                               | 1 |  |  |  |
|     | (a) $\frac{5}{17}$ (b) $\frac{6}{17}$ (d) $\frac{8}{17}$                                                                                                                   | 1 |  |  |  |
|     |                                                                                                                                                                            |   |  |  |  |
| 15. | If P $(\frac{a}{3}, 4)$ is the mid-point of the line segment joining the points Q $(-6, 5)$ and R $(-2, 3)$ ,                                                              |   |  |  |  |
|     | then the value of a is                                                                                                                                                     | 1 |  |  |  |
| •   | (a) $-12$ (b) $-4$ (c) $12$ (d) $-6$                                                                                                                                       | 1 |  |  |  |
| 16. | Using the empirical formula, find the mode of a distribution whose mean is 8.32 and the                                                                                    |   |  |  |  |
|     | median is 8.05.                                                                                                                                                            |   |  |  |  |
|     | (a) 24.51 (b) 8.32 (c) 8.05 (d) 7.51                                                                                                                                       | 1 |  |  |  |
| 17. | Three vertices of a parallel grow APCD are A(1, 4), P(2, 2) and C(5, 8). The ordinate                                                                                      |   |  |  |  |
| 17. | Three vertices of a parallelogram ABCD are $A(1, 4)$ , $B(-2, 3)$ and $C(5, 8)$ . The ordinate of the fourth vertex D is                                                   |   |  |  |  |
|     | (a) 9 (b) 8 (c) 7 (d) 6                                                                                                                                                    | 1 |  |  |  |
|     |                                                                                                                                                                            |   |  |  |  |
| 18. | The probability that a non-leap year has 53 Sundays, is                                                                                                                    |   |  |  |  |
|     | (a) $\frac{2}{7}$ (b) $\frac{5}{7}$ (c) $\frac{6}{7}$                                                                                                                      | 1 |  |  |  |
|     | <b>DIRECTION</b> : In the question number 19 and 20, a statement of <b>Assertion (A)</b> is                                                                                | 1 |  |  |  |
|     | followed by a statement of <b>Reason (R).</b> Choose the correct option:                                                                                                   |   |  |  |  |
|     | (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of                                                                                |   |  |  |  |
|     | assertion (A).                                                                                                                                                             |   |  |  |  |
|     | (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct                                                                                           |   |  |  |  |
|     | explanation of assertion (A). (c) Assertion (A) is true but reason (R) is false.                                                                                           |   |  |  |  |
|     | (d) Assertion (A) is false but reason (R) is true.                                                                                                                         |   |  |  |  |
|     | (2) 1 222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                  |   |  |  |  |
| 19. | <b>Assertion (A):</b> If LCM of two numbers is 2475 and their product is 12375, then their                                                                                 |   |  |  |  |
|     | HCF is 5 (A) Reason (R): HCF (a, b) $\times$ LCM (a, b) = a $\times$ b.                                                                                                    | 1 |  |  |  |
| 20. | <b>Reason (R):</b> HCF $(a, b) \times LCM(a, b) = a \times b$ . <b>Assertion (A):</b> The length of the minute hand of a clock is 7 cm. Then the area swept by             |   |  |  |  |
| 20. | the minute hand in 5 minute is 77 cm <sup>2</sup>                                                                                                                          |   |  |  |  |
|     | Reason (R): The length of an arc of a sector of angle $\theta$ and radius r is given by                                                                                    |   |  |  |  |
|     | $l = \frac{\theta}{360^{\circ}} \times 2\pi r$                                                                                                                             |   |  |  |  |
|     | $l = \frac{1}{360^{\circ}} \times 2\pi l$                                                                                                                                  | 1 |  |  |  |
|     | CECTION D                                                                                                                                                                  |   |  |  |  |
|     | SECTION-B Section B Consists of 5 questions of 2 marks each                                                                                                                |   |  |  |  |
| 21. | Find the HCF and LCM of 96 and 404 using prime factorisation method.                                                                                                       |   |  |  |  |
| ,   | OR                                                                                                                                                                         |   |  |  |  |
|     | The HCF of 65 and 117 is expressible in the form 65m-117. Find the value of m.                                                                                             | 2 |  |  |  |
|     |                                                                                                                                                                            |   |  |  |  |
| 22  | A how contains 5 and morphics 8 white morphics and 4 areas weathless One weathle in the                                                                                    |   |  |  |  |
| 22. | A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will be |   |  |  |  |
|     | (i) red?                                                                                                                                                                   |   |  |  |  |
|     | (ii) not green?                                                                                                                                                            |   |  |  |  |
|     | OR                                                                                                                                                                         |   |  |  |  |
|     |                                                                                                                                                                            |   |  |  |  |


|     | A lot consists of 144 ball pens of which 20 are defective and the others are good. Nuri will buy a pen if it is good, but will not buy if it is defective. The shopkeeper draws one pen at random and gives it to her. What is the probability that  (i) She will buy it?  (ii) She will not buy it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| 23. | $5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |
|     | Evaluate: $\frac{sin^2 30^{\circ} + cos^2 30^{\circ}}{sin^2 30^{\circ} + cos^2 30^{\circ}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 |  |  |
| 24. | Find the point on x-axis which is equidistant from the points $(2, -5)$ and $(-2, 9)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 |  |  |
| 25. | If the point C $(-1, 2)$ divides the line segment AB in the ratio $3:4$ , where the coordinates of A are $(2, 5)$ , find the coordinates of B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |
|     | SECTION-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |
|     | Section C consists of 6 questions of 3 marks each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |
| 26. | Sides AB and BD and median AC of a triangle ABD are respectively proportional to sides PQ and QR and median PM of $\Delta$ PQR. Show that $\Delta$ ABD $\sim$ $\Delta$ PQR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |  |  |
|     | $\frac{D}{C} = \frac{D}{D} = \frac{D}$ |   |  |  |
|     | B 12 cm C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 |  |  |
| 27. | The sum of two numbers is 34. If 3 is subtracted from one number and 2 is added to another, the product of these two numbers becomes 260, Find the numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |  |  |
| 28. | If $\alpha$ and $\beta$ are the zeroes of the polynomial $6y^2 - 7y + 2$ , find a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 |  |  |
| 29. | If $x = a \cos \theta - b \sin \theta$ and $y = a \sin \theta + b \cos \theta$ , then prove that $a^2 + b^2 = x^2 + y^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 |  |  |
| 30. | A chord of a circle of radius 15 cm subtends an angle of $60^{\circ}$ at the centre. Find the areas of the corresponding minor segment of the circle. (Use $\pi = 3.14$ and $\sqrt{3} = 1.73$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J |  |  |
|     | OD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |
|     | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |

|     | A brooch is made with silver wire in the form of a circle with diameter 35 mm. The wire is also used in making 5 diameters which divide the circle into 10 equal sectors as shown in fig find: |                                 |                                    |                                  |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|----------------------------------|---|
|     | (i) The tot                                                                                                                                                                                    | al length of the silv           | er wire required.                  |                                  | 3 |
|     |                                                                                                                                                                                                |                                 |                                    |                                  |   |
| 31. | Prove that                                                                                                                                                                                     | $\sqrt{5}$ is irrational        |                                    |                                  | 3 |
|     |                                                                                                                                                                                                | •                               | SECTION - D                        |                                  |   |
|     |                                                                                                                                                                                                |                                 | consists of 4 questions of 5       | marks each                       |   |
| 32. | Solve the following system of equations graphically                                                                                                                                            |                                 |                                    |                                  |   |
|     | $ \begin{aligned} x + 3y &= 6 \\ 2x - 3y &= 12 \end{aligned} $                                                                                                                                 |                                 |                                    |                                  |   |
|     | 2x - 3y = 12 and hence find the value of a,                                                                                                                                                    |                                 |                                    |                                  |   |
|     | If $4x + 3$                                                                                                                                                                                    |                                 | ,                                  |                                  |   |
|     |                                                                                                                                                                                                |                                 | OR                                 |                                  |   |
|     | The area of a rectangle gets reduced by 9 square units, if its length is reduced by 5 units                                                                                                    |                                 |                                    |                                  |   |
|     |                                                                                                                                                                                                |                                 | _                                  | th by 3 units and the breadth    | 5 |
|     | by 2 units, the area increases by 67 square units. Find the dimensions of the rectangle.                                                                                                       |                                 |                                    |                                  |   |
| 33. | Prove that                                                                                                                                                                                     | if a line is drawn p            | parallel to one side of a triang   | le to intersect the other two    |   |
|     |                                                                                                                                                                                                |                                 | other two sides are divided in     |                                  |   |
|     |                                                                                                                                                                                                |                                 | value of x in the following qu     |                                  |   |
|     | In $\triangle ABC$ ,                                                                                                                                                                           | $DE \parallel BC$ . If $BD = 2$ | x - 3, $AB = 2x$ , $CE = x - 2$ ar | $\operatorname{ad} AC = 2x + 3.$ |   |
|     | <b>↑</b>                                                                                                                                                                                       |                                 |                                    |                                  |   |
|     |                                                                                                                                                                                                |                                 |                                    |                                  |   |
|     | D E                                                                                                                                                                                            |                                 |                                    |                                  |   |
|     |                                                                                                                                                                                                |                                 |                                    |                                  |   |
|     | / \                                                                                                                                                                                            |                                 |                                    | 5                                |   |
|     | B C                                                                                                                                                                                            |                                 |                                    |                                  |   |
| 34. | A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height                                                                                                        |                                 |                                    |                                  |   |
|     |                                                                                                                                                                                                |                                 | he angle of elevation of the b     |                                  |   |
|     | girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the 5                                                                                                 |                                 |                                    |                                  | 5 |
|     | distance travelled by the balloon during the interval.                                                                                                                                         |                                 |                                    |                                  |   |
| 35. | If the median of the distribution given below is 868, find the values of x and y.                                                                                                              |                                 |                                    |                                  |   |
|     |                                                                                                                                                                                                | Class interval                  | Frequency                          |                                  |   |
|     |                                                                                                                                                                                                | 800-820                         | 7                                  |                                  |   |
|     |                                                                                                                                                                                                | 820-840                         | 14                                 |                                  |   |
|     |                                                                                                                                                                                                | 840-860                         | X                                  |                                  |   |
|     |                                                                                                                                                                                                | 860-880                         | 25                                 |                                  |   |
|     |                                                                                                                                                                                                | 880-900                         | y                                  |                                  |   |
|     |                                                                                                                                                                                                | 900-920                         | 10                                 |                                  |   |
|     |                                                                                                                                                                                                | 920-940                         | 5                                  |                                  |   |
|     |                                                                                                                                                                                                | Total                           | 100                                |                                  |   |
|     |                                                                                                                                                                                                | Total                           | 100                                |                                  |   |
|     |                                                                                                                                                                                                |                                 |                                    |                                  |   |

|     | OR                                                                                                                                                                                                     |                                                                                                             |                                                                                                                                                                                                                              |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | During a medical check-up of 35 students, their weights were recorded as follows:                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                              |   |
|     | Weight in kgs                                                                                                                                                                                          | No. of students                                                                                             |                                                                                                                                                                                                                              |   |
|     | Below 40                                                                                                                                                                                               | 3                                                                                                           |                                                                                                                                                                                                                              |   |
|     | Below 42                                                                                                                                                                                               | 5                                                                                                           |                                                                                                                                                                                                                              |   |
|     | Below 44                                                                                                                                                                                               | 9                                                                                                           |                                                                                                                                                                                                                              |   |
|     | Below 46                                                                                                                                                                                               | 14                                                                                                          |                                                                                                                                                                                                                              | 5 |
|     | Below 48                                                                                                                                                                                               | 28                                                                                                          |                                                                                                                                                                                                                              |   |
|     | Below 50                                                                                                                                                                                               | 31                                                                                                          |                                                                                                                                                                                                                              |   |
|     | Below 52                                                                                                                                                                                               | 35                                                                                                          |                                                                                                                                                                                                                              |   |
|     | Compute the modal wei                                                                                                                                                                                  | ght.                                                                                                        |                                                                                                                                                                                                                              |   |
|     |                                                                                                                                                                                                        | SECTION                                                                                                     | N-E                                                                                                                                                                                                                          |   |
|     | Section E c                                                                                                                                                                                            | onsists of 3 Case Based                                                                                     | Questions of 4 marks each                                                                                                                                                                                                    |   |
| 36. | In a nothology lab a gul                                                                                                                                                                               | tura tast has been condu                                                                                    | atad. In the test, the number of besterie                                                                                                                                                                                    |   |
| 20. | In a pathology lab, a culture test has been conducted. In the test, the number of bacteria taken into consideration in various samples is all 3- digit numbers that are divisible by 7, taken in order |                                                                                                             |                                                                                                                                                                                                                              |   |
|     | On the basis of above information, answer the following questions                                                                                                                                      |                                                                                                             |                                                                                                                                                                                                                              | 1 |
|     |                                                                                                                                                                                                        | ria are considered in the                                                                                   |                                                                                                                                                                                                                              | 1 |
|     |                                                                                                                                                                                                        | les should be taken into                                                                                    |                                                                                                                                                                                                                              |   |
|     | (c) Find the total nu                                                                                                                                                                                  | mber of bacteria in first OR                                                                                | 10 samples.                                                                                                                                                                                                                  | 2 |
|     | ( A) How many bacte                                                                                                                                                                                    | eria are there in the 7 <sup>th</sup> sa                                                                    | ample from the last.                                                                                                                                                                                                         |   |
| 37. | rotating upright wheel w<br>in such a way that as the<br>taking a ride in Ferris w                                                                                                                     | with multiple passengers<br>wheel turns, they are k<br>heel, Monika came out to<br>ng the ride. She was cur | ly fixed during festivals) consisting of a carrying components attached to the rim ept upright, usually by gravity. After from the crowd and was observing her rious about the different angles and e figure as given below. |   |



Section-E 36)  $105, 112, 119, \dots 994$  forms an AP with  $a = 105, d = 7, a_n = 994$ (a) a = a + 4d = 105 + 28 = 133 bacteria Thus, 128 samples are taken into consideration (b) w = 3 $\frac{2n = a + (n-1)d}{994 = 105 + (n-1)7}$   $\frac{889}{7} = n-1$  $\Rightarrow N-1 = 127$   $\Rightarrow N=128$ (c)  $S_n = \frac{n}{2} [2a + (n-1)d]$  $S_{10} = \frac{10}{2} \left[ 2 \times 105 + 9 \times 7 \right]$ = 5 [210+63] = 5×273 = 1365 bacteria (d) nth term from last term = l-(n-1)d 7 tem from the last = 994-6X7 = 994-42 = 952 bacteria 37) (a) LORP = 90° (redius I tangent LOQP = 90' Sthroughthupt. of contact Using angle sour peoperty in gred. ORPO, LROQ = 360° - (90° + 90° + 30°) = 360° - 210° = 150°



$$= \frac{41}{3.66} \approx 0.366 \text{c}$$
(c) volume of pen stand
$$= \frac{14.66}{2010}$$

$$= \frac{525 - 4 \times 11}{30} = \frac{525 - 44}{3010}$$

$$= \frac{525 - 1.466}{30} \approx \frac{523.534 \text{cm}^3}{3010}$$
(d)  $\frac{525 - 1.466}{3010} \approx \frac{523.534 \text{cm}^3}{3010}$ 

$$= 2\left(\frac{15\times10 + 10\times3.5 + 3.5\times15}{2\times237.5 - 475 \text{cm}^2}\right)$$

$$= 2 \times 237.5 = \frac{475 \text{cm}^2}{3010}$$
SECTION-D

32) 
$$2x + 3y = 6$$
 $3y = 6 - 2$ 
 $y = 6 - 2$ 
 $y = 6 - 2$ 
 $2x - 3y = 12$ 
 $2x - 12 = 3y$ 
 $y = 2x - 12$ 
 $y = 2x - 12$ 
 $y = 3 = 2x - 12$ 
 $y = 2x - 12 = 3y$ 
 $y = 2x - 12 = 3y$ 

(graph)

$$x = 6$$
 $y = 0$ 
 $4x + 3y = a$ 
 $\Rightarrow 24 + 0 = a$ 
 $\therefore a = 24$ 

OR Let the length and breedth of the rectangle be x units and y units respectively.

ATQ,  $(x-5)(y+3) = xy-9$ 
 $\Rightarrow 2y + 3x - 5y - 15 = xy - 9$ 
 $\Rightarrow 2y + 3x - 5y = 6 \rightarrow (1)$ 

Also,  $(x+3)(y+2) = xy + 67$ 
 $\Rightarrow 2x + 3y + 6 = 2y + 67$ 
 $\Rightarrow 2x + 3y = 61 \rightarrow (2)$ 

(1)  $x = 2x + 3y + 6 = 2y + 67$ 
 $\Rightarrow 2x + 3y = 61 \rightarrow (2)$ 
(2)  $x = 2x + 3y = 61 \rightarrow (2)$ 
 $x = 2x + 3y = 61 \rightarrow (2)$ 

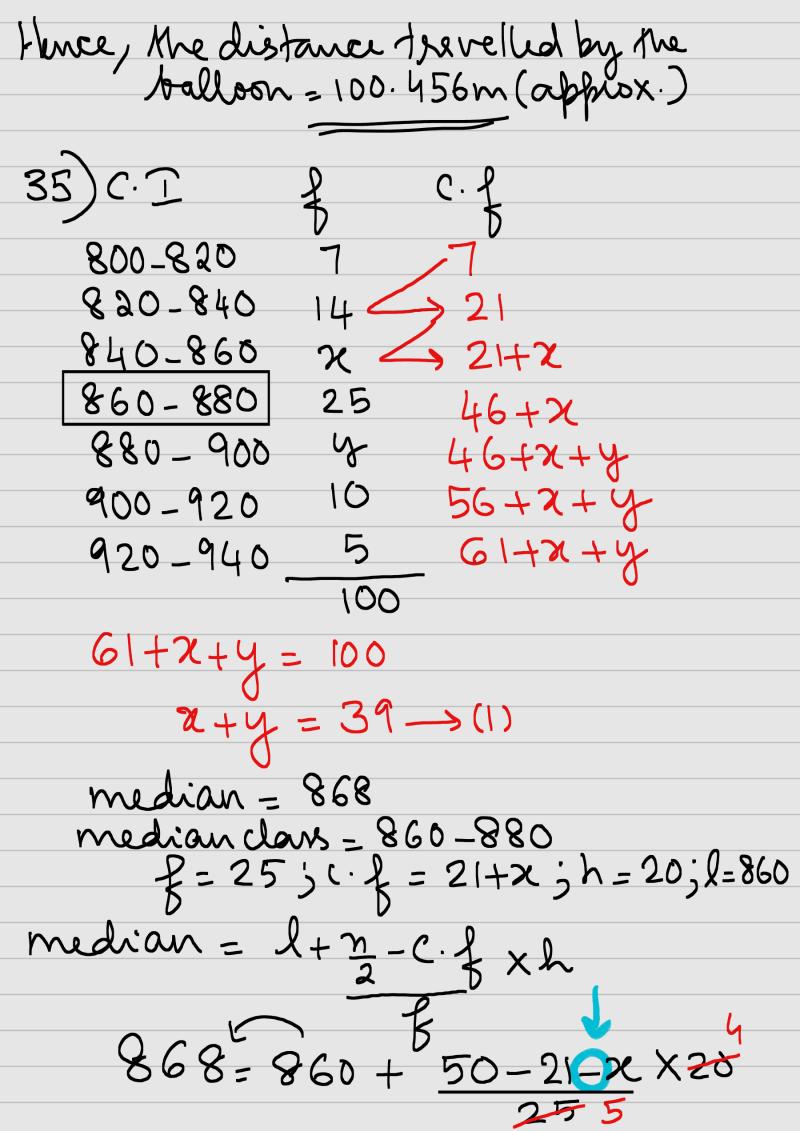
From eq: (2), 
$$2x + 27 = 61$$
  
 $2x = 34$   
 $x = 17$ 

Hence, the dimensions of rectangle are 17 units and 9 units

$$\begin{array}{c} 33 \\ 2x + 3 \\ 2x + 3 \\ 2x - 2 \\ 3 \end{array}$$

Using Thales theorem, since DE BC, wi DABC, AD = AE

DB EC


$$\Rightarrow \frac{2x-2x+3}{x-3} = \frac{2x+3-2x+2}{x-2}$$

$$\Rightarrow \frac{\chi+3}{\chi-3} = \frac{\chi+5}{\chi-2}$$

$$\Rightarrow (\chi+3)(\chi+3) = (\chi+5)(\chi+5)$$

$$\Rightarrow$$
  $(x+3)(x-2) = (x+5)(x-3)$ 

$$\Rightarrow$$
  $\chi^2 + \chi - 6 = \chi^2 + 2\chi - 15$   
 $\Rightarrow$   $\chi - 2\chi = -15 + 6$   
 $\therefore -\chi = -9$   
 $\chi = 9$   
 $\chi = 9$   



$$8^{2} = (29 - \chi) \times 4$$

$$29 - \chi = 10$$

$$\chi = 19$$

$$y = 20$$

$$0R$$

$$C \cdot I$$

$$38 - 40$$

$$40 - 42$$

$$42 - 44$$

$$44 - 46$$

$$46 - 48$$

$$46 - 48$$

$$46 - 48$$

$$46 - 50$$

$$50 - 52$$

$$357$$

$$4$$

$$46 - 48$$

$$46 - 48$$

$$46 - 48$$

$$46 - 50$$

$$46 - 48$$

$$46 - 48$$

$$46 - 48$$

$$46 - 50$$

$$47 - 60 - 62$$

$$48 - 60 - 62$$

$$49 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 62$$

$$40 - 60 - 6$$

Thus, LABC= < PQM (corresponding angles => < B= < Q > (2) of similar des are equal)

In ABD and APOR, AB = BD PQ QR  $\angle B = \angle Q \left[ fameq: (2) \right]$ · AABD~ APOR[SAS Similaridy) Hence Proved. Jiven: - 2ACB = 90°

ZAED = 90°

D To prove: 
ZAED = 90°

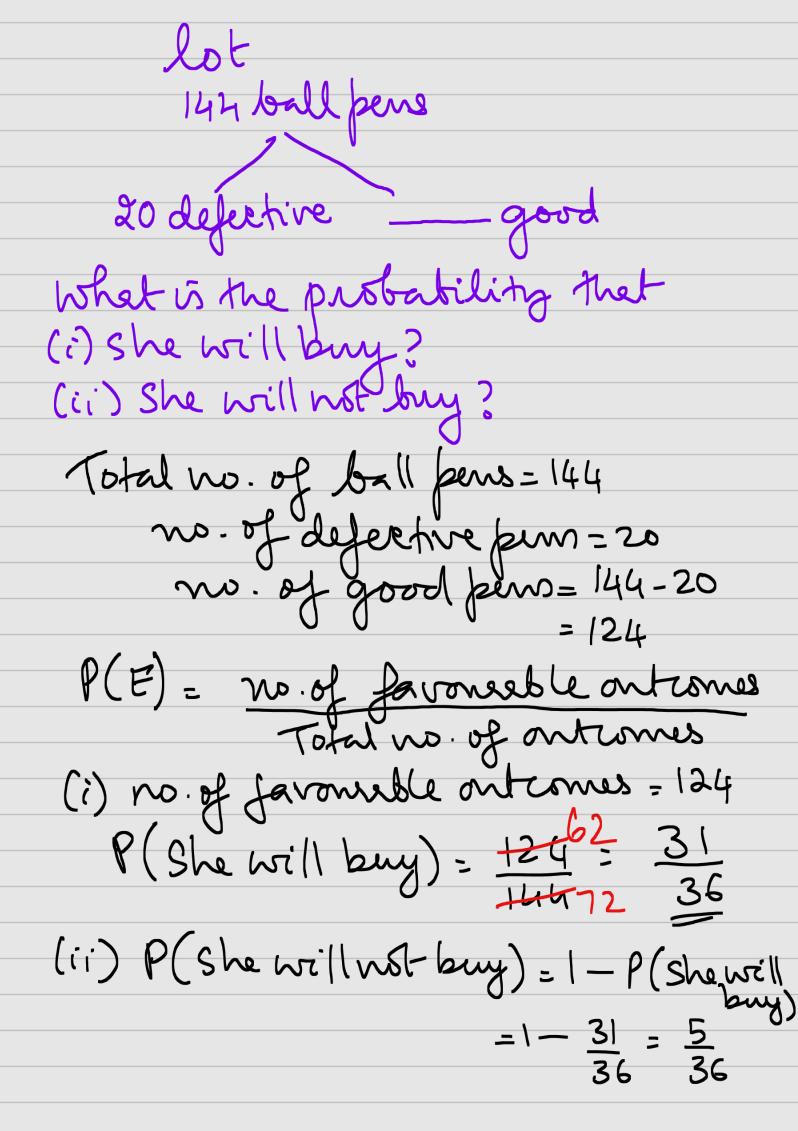
D ABC ~ ABED (OR) Proof: In  $\triangle$  ABC and  $\triangle$  ADE, LACB = LAED (each 90') LBAC=LEAD (common augle) Thus,  $\frac{AB}{AD} = \frac{BC}{DE} = \frac{AC}{AE}$  (Corresponding Sides of Similar Ds are in proposition)

ATQ, 
$$(x-3)(34-x+2)=260$$
  
 $\Rightarrow (x-3)(36-x)=260$   
 $\Rightarrow 36x-x^2-108+3x=260$   
 $\Rightarrow x^2-39x+368=0$   
 $\Rightarrow (x-23)(x-16)=0$   
 $x=23,16$   
When  $x=23$ , the  $xo.5$  are 23 and 11  
when  $x=16$ , the  $xo.5$  are 16 and 18  
28) If  $x$  and  $y$  are the zeroes of  $6y^2-7y+2$ , find a quidretic polynomial whose  $x=16$ ,  $y=16$ ,  $y$ 

... The required polynomial is

K[y²- (Sum of zeroes)by+ product of zeroes]

Where k is any non-zero real no-


area of sector =  $\frac{9}{360}$  x  $\frac{1.57}{5}$  =  $\frac{160}{360}$  x  $\frac{3.14}{5}$  x  $\frac{15}{5}$  =  $\frac{117.75}{5}$   $\frac{3}{5}$ 

area (
$$\triangle ADB$$
) =  $\sqrt{3}R^2$  =  $1.73 \times 15 \times 15$  =  $97.3125$   
 $121$  em²  
... area of minor segment =  $117.15 - 97.3125$   
=  $20.4375$ cm²  
diameter =  $35$ mm  
find  
(i) total length of the  
solver wire used  
(ii) area of each sector.  
 $9 = 360 = 36$ °  
(c) Total length of wire used =  $5 \times 29 + 27$ 7  
=  $2x (5+17)$   
=  $2 \times 35 (5 + 22)$   
=  $35 \times 57 = 285$ mm  
71  
(ii) area of each sector =  $2 \times 7$ 1 $x^2$   
=  $36 \times 22 \times 36 \times 35$   
=  $36 \times$ 

## SECTION-B

$$96 = 3x^{5}$$
  
 $404 = 2x |0|$   
 $Hef = 2^{2} = 4$   
 $LCM = 2^{5} \times 3 \times 10|$ 

$$= 9696$$



23) Evaluate 
$$\frac{5 \cos^2 60^{\circ} + 4 \sec^2 30^{\circ} + \cos^2 30^{\circ}}{8 \cos^2 30^{\circ} + \cos^2 30^{\circ}}$$
 $\frac{3 \cos^2 30^{\circ} + \cos^2 30^{\circ}}{8 \cos 30^{\circ} = \frac{2}{3}}$ ,  $\frac{3 \cos 30^{\circ} = \frac{2}{3}}{3}$ 
 $\frac{3 \cos 30^{\circ} = \frac{1}{3}}{12}$ ,  $\frac{3 \cos 30^{\circ} = \frac{3}{3}}{12}$ 
 $\frac{1}{4} + \frac{3}{4}$  =  $\frac{5 \cos 30^{\circ} = \frac{3}{3}}{12}$ 
 $\frac{1}{4} + \frac{3}{4}$  =  $\frac{1}{3} + \frac{1}{3} + \frac{1}{3$ 

$$\Rightarrow PA^{2} = PB^{2}$$

$$\Rightarrow (2+x)^{2}$$

$$\Rightarrow (2-x)^{2} + (-5-0)^{2} = (-20x)^{2} + (9-0)^{2}$$

$$\Rightarrow (-4x+x^{2}+25) = (-4x+x^{2}+81)$$

$$\Rightarrow -8x = 56$$

$$x = -7$$
Hence, the required point is (-7,0)
$$25) \quad 3 \quad 4$$

$$A(2,5) \quad C(-1,2) \quad b(x,y)$$

$$C(x,y) = C\left(\frac{m_{1}x_{1}+m_{2}x_{1}}{m_{1}+m_{2}}, \frac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\right)$$

$$(-1,2) = (3x+8) \quad 3y+20$$

$$3x+8=-7 \quad 3y+20=14$$

$$3x=-15 \quad 3y=-6$$

$$x=-5 \quad y=-2$$

B(x,y)=B(-5,-2)//